234x^2+(546x^2)-(352x^2)+(1234x^2)-(8x^2)+(2354x^2)+(5555x^2)=17

Simple and best practice solution for 234x^2+(546x^2)-(352x^2)+(1234x^2)-(8x^2)+(2354x^2)+(5555x^2)=17 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 234x^2+(546x^2)-(352x^2)+(1234x^2)-(8x^2)+(2354x^2)+(5555x^2)=17 equation:



234x^2+(546x^2)-(352x^2)+(1234x^2)-(8x^2)+(2354x^2)+(5555x^2)=17
We move all terms to the left:
234x^2+(546x^2)-(352x^2)+(1234x^2)-(8x^2)+(2354x^2)+(5555x^2)-(17)=0
We add all the numbers together, and all the variables
9563x^2-17=0
a = 9563; b = 0; c = -17;
Δ = b2-4ac
Δ = 02-4·9563·(-17)
Δ = 650284
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{650284}=\sqrt{4*162571}=\sqrt{4}*\sqrt{162571}=2\sqrt{162571}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{162571}}{2*9563}=\frac{0-2\sqrt{162571}}{19126} =-\frac{2\sqrt{162571}}{19126} =-\frac{\sqrt{162571}}{9563} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{162571}}{2*9563}=\frac{0+2\sqrt{162571}}{19126} =\frac{2\sqrt{162571}}{19126} =\frac{\sqrt{162571}}{9563} $

See similar equations:

| -36-(1+7x)=6(-7-x) | | y=5(-5)-2 | | 113-y=157 | | 234x^2+(546x^2)-(352x^2)+(1234x^2)*(8x^2)+(2354x^2)+(5555x^2)=16 | | 2x=2(x-6) | | 4/5x30=3- | | 234x^2+(546x^2)-(352x^2)+(1234x^2)-(8x^2)+(2354x^2)=13 | | 234x^2+(546x^2)-(352x^2)+(1234x^2)*(8x^2)+(2354x^2)=13 | | 3d-3)=d-3 | | 4(x-1)+7x=2x+4 | | 234x^2+(546x^2)-(352x^2)+(1234x^2)*(8x^2)+(2354x^2)*(124326x^2)=13 | | 9.52+x=17.88 | | x+8/x=12/9 | | (n-9)*10=80 | | 1.2*^10^-5=2x(x) | | 5x=103 | | 6x+5=3+14 | | 6(x+1)+48=90 | | 1.2x10^-5=2x(x) | | -25=6x-7 | | 2x/(x+3)=1 | | 3=3.3x​ | | d-13= 25 | | y=5(-1/2)-2 | | 234x^2+(546x^2)-(352x^2)+(1234x^2)=11 | | 24x-22=-5(1-6x) | | 0.75(8+e)=2–1.25e | | 5,722+x=6,154 | | 24x-22=-5(1-6x | | 5n+1=3;+7 | | X²-20x-21=0 | | 19.95+85x=184.85 |

Equations solver categories